
1Deliberation	in	Planning	and	Acting

Last	update:	June	22,	2017

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

http://www.laas.fr/planning

Deliberation	in	Planning	and	Acting

Part	2:		Refinement	Models

Malik Ghallab LAAS/CNRS, University of Toulouse
Dana Nau University of Maryland
Paolo Traverso FBK ICT IRST, Trento, Italy

2Deliberation	in	Planning	and	Acting

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Motivation
= Multiple levels of abstraction

Ø Actors organized into physical subsystems
Ø Deliberation reflects this

= Heterogeneous reasoning
Ø Different techniques
• at different levels
• in different subsystems

at same level

= Continual online planning
Ø World models partial, can’t

plan everything in advance
Ø Plans are abstract and

partial until more detail
is perceived at acting time

3Deliberation	in	Planning	and	Acting

not known until
acting time

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Opening	a	Door
= Continual interaction

with the environment
= How depends on

what kind of door

4Deliberation	in	Planning	and	Acting

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Opening	a	Door
= Continual interaction

with the environment
= How depends on

what kind of door
Ø Sliding or hinged?

5Deliberation	in	Planning	and	Acting

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Opening	a	Door
= Continual interaction

with the environment
= How depends on

what kind of door
Ø Sliding or hinged?
Ø Hinge on left or right?

6Deliberation	in	Planning	and	Acting

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Opening	a	Door
= Continual interaction

with the environment
= How depends on

what kind of door
Ø Sliding or hinged?
Ø Hinge on left or right?
Ø Open toward or away?

7Deliberation	in	Planning	and	Acting

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Opening	a	Door
= Continual interaction

with the environment
= How depends on

what kind of door
Ø Sliding or hinged?
Ø Hinge on left or right?
Ø Open toward or away?
Ø Knob, lever, push bar, …

8Deliberation	in	Planning	and	Acting

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Opening	a	Door
= Continual interaction

with the environment
= How depends on

what kind of door
Ø Sliding or hinged?
Ø Hinge on left or right?
Ø Open toward or away?
Ø Knob, lever, push bar,

pull handle, push plate, …

9Deliberation	in	Planning	and	Acting

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

Opening	a	Door
= Continual interaction

with the environment
= How depends on

what kind of door
Ø Sliding or hinged?
Ø Hinge on left or right?
Ø Open toward or away?
Ø Knob, lever, push bar,

pull handle, push plate,
something else?

10Deliberation	in	Planning	and	Acting

Outline

1. Representation
State variables, commands, refinement methods

2. Acting
Rae (Refinement Acting Engine)

3. Planning
SeRPE (Sequential Refinement Planning Engine)

4. Using Planning in Acting
Techniques

11Deliberation	in	Planning	and	Acting

State	Variables
= Classical representation represents states as sets of logical atoms

s1 = { adjacent(d1,d2),	adjacent(d2,d1),	
adjacent(d1,d3),	adjacent(d3,d1),
loc(r1,d1),	cargo(r1,c2),	
loc(r2,d2),	empty(r2),	
pos(c1,d1),	pos(c2,r2)	}

= State Variable representation:
Ø Logical atoms for rigid properties

adjacent(d1,d2),	adjacent(d2,d1),	adjacent(d1,d3),	adjacent(d3,d1)

Ø State variables for varying properties
• syntactic terms that have different values in different states

s1 = { loc(r1)=d1,	 cargo(r1)= c2,	
loc(r2)=d2,	 cargo(r2)=nil,	
pos(c1)=d1,		pos(c2)= r2	}

d2d1

d3

r1

c1

r2c2

rigid

varying

12Deliberation	in	Planning	and	Acting

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Tasks	and	Methods
= Task: activity for the actor to perform
= For each task, one or more

refinement methods
Ø Operational models
Ø Different ways to perform the task

= Can also have
Ø methods for achieving goals
Ø methods for responding to events

Ø assignment statements
Ø control constructs
• if-then-else,

while, for, case, etc.
Ø tasks to perform
Ø goals to achieve
Ø commands to the

execution platform

method-name(arguments)
task: task-name(arguments)
pre: test
body: a program

13Deliberation	in	Planning	and	Acting

Example

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

loc2

loc1

c1

= Tell robot r1	to fetch c2
= r1	doesn’t know c2’s location, needs to search
= Commands the execution platform can handle:

Ø take, put, perceive,	move-to

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

loc0 r1

loc4

loc3

c2
loc5

14Deliberation	in	Planning	and	Acting

Goals Events

= Write goal as a special kind of task
Ø achieve(condition)

= Like other tasks, but includes
monitoring
Ø if condition becomes true

before finishing body(m),
return without finishing

Ø if condition isn’t true after
finishing body(m), then fail

= Event: something that may happen
in a dynamic environment

= Example: an emergency
Ø If r isn’t already handling

another emergency, then
• stop what it’s doing
• go handle the emergency

method-name(args)
event:event-name(args)
pre: test
body: program

method-name(args)
task: achieve(condition)
pre: test
body: program

15Deliberation	in	Planning	and	Acting

Outline

1. Representation
State variables, commands, refinement methods

2. Acting
Rae (Refinement Acting Engine)

3. Planning
SeRPE (Sequential Refinement Planning Engine)

4. Using Planning in Acting
Techniques

16Deliberation	in	Planning	and	Acting

Rae	(Refinement	Acting	Engine)

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

= Generalization and formalization of OpenPRS

= Input:
Ø external tasks, goals, events
Ø current state

= Output:
Ø commands to execution platform

= Concurrently handle multiple
tasks, goals, events
Ø For each one,

a refinement stack

= Agenda = {all current refinement stacks}

17Deliberation	in	Planning	and	Acting

Rae	(Basic	Idea)
initialize Agenda
loop:
Ø for every new external task* t
• Candidates = {applicable method instances}
• arbitrarily choose m in Candidates
• create refinement stack with t and m
• add it to Agenda

Ø for each stack σ in Agenda
• Progress(σ)
• if σ is finished, remove it from Agenda

…

sub-subtask* and method
subtask* and method
task* and method

task* = task or goal or event

Progress(σ):

…

subtask* and method
task* and method

Agenda:

current
step?

return

executing

Retry
task*

failed

 choose method m for a
push a, m onto stack

nomore
steps?

pop stack

nomethods
for a?

finished

yes

yes

a ← next step

a’s type?

task*

command

trigger it

assignment

update
state

Retry
task*

18Deliberation	in	Planning	and	Acting

Example

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then take(r,c,pos(c))
else do

move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

…

task:

method:

task:

method:

task:

commands	to	
the	execution	

platform:

perceive(loc1)

m-search(r1,c2)

search(r1,c2)

m-fetch(r1,c2)

fetch(r1,c2)

refinement stack
= current path

through the
refinement tree

refinement tree:

✓

✓

19Deliberation	in	Planning	and	Acting

Recovering	from	Failure

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then take(r,c,pos(c))
else do

move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

…

sensor failure

?

task:

method:

task:

method:

task:

= perceive	fails, so m-search fails
Ø If other method instances for search, try them
Ø Else m-fetch	fails, look for other fetch	methods

= Analogous to backtracking
Ø But can’t backtrack to previous state

commands	to
the	execution	

platform:

Refinement tree:

✓

✓

20Deliberation	in	Planning	and	Acting

Outline

1. Representation
State variables, commands, refinement methods

2. Acting
Rae (Refinement Acting Engine)

3. Planning
SeRPE (Sequential Refinement Planning Engine)

4. Using Planning in Acting
Techniques

21Deliberation	in	Planning	and	Acting

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…
?

?

Motivation

= When dealing with an event or task,
Rae	may need to make either/or choices
Ø Several possible methods for a task
• Which one to use?

Ø Agenda: refinement stacks for several tasks
• How to prioritize?

= Rae	chooses reactively
Ø Bad choices may be costly or irreversible

= Use a planner to look ahead
Ø Explore the possible choices
Ø Predict what will work well, what won’t

task:

method:

task:

22Deliberation	in	Planning	and	Acting

Refinement	Planning
= SeRPE algorithm (pseudocode in the book)

Ø Basic idea: simulate Rae
• For each command, a descriptive action model
– predict what the command will do, not how

Ø Heuristic search through Rae’s possible alternatives
• Different possible method instances ⇒ different refinement trees
• Simulate, explore consequences

= Generalization of HTN planning (the SHOP	algorithm)
Ø SHOP
• Body of a method is a list of tasks ⟨τ1, τ2, …, τn⟩
• Backtracking search through methods for each τi

Ø SeRPE uses the same methods that Rae uses
• Body of a method is a program to generate tasks and goals
• Need to backtrack over the statements in the program

23Deliberation	in	Planning	and	Acting

SeRPE (Basic	Idea)
= SeRPE(t)

Ø nondeterministically choose
a method m for t

Ø progress m repeatedly
until it’s finished

= Nondeterministic choice
Ø Multiple possible choices,

algorithm doesn’t specify
how to choose
• Theoretical model:

nondeterministic Turing
machine considers all of them

Ø Can implement as backtracking,
A* search, GBFS, etc.

task* = task or goal or event

like calling Progress(σ) repeatedly

current
step?

return

executing

Retry
task*

failed

 choose method m for a
push a, m onto stack

nomore
steps?

pop stack

nomethods
for a?

finished

yes

yes

a ← next step

a’s type?

task*

command

trigger it

assignment

update
state

Retry
task*

use action model
to update state

24Deliberation	in	Planning	and	Acting

Descriptive	Action	Models
= Preconditions-and-effects representation

Ø Like classical operators, but with state variables instead of logical atoms

= Command:

Ø take(r,o,l):
robot r takes object o at location l

Ø put(r,o,l):
r puts o down at location l

Ø perceive(r,l):
r perceives what objects are at l
• can only perceive what’s at

current location

= Action model

Can’t do the fetch example

take(r,o,l)
pre: cargo(r) =	nil,	loc(r) = l, loc(o) = l
eff: cargo(r)← o, loc(o) ← r

put(r,o,l)
pre: loc(r) = l, loc(o) = r
eff: cargo(r)← nil, loc(o) ← l

perceive(r,l)
?

If we knew this in advance,
perception wouldn’t be necessary

25Deliberation	in	Planning	and	Acting

Limitation

= Models of the environment
are inherently incomplete
Ø Even nondeterministic models

don’t always predict all
possible contingencies

= Techniques can be extended
to nondeterministic models
Ø Part 4 of this talk

= Deterministic action models => much simpler planning algorithm
Ø Use when errors are infrequent and don’t have severe consequences
Ø Actor can recover online

26Deliberation	in	Planning	and	Acting

Simple	Deterministic	Example

= Robot can move
containers, put them
into piles

= Deterministic action
models

load(r,c,c′,p,d)
pre: at(p,d), cargo(r)=nil, loc(r)=d, pos(c)=c′, top(p)=c
eff: cargo(r)←c, pile(c)←nil, pos(c)←r, top(p)←c′

unload(r,c,c′,p,d)
pre: at(p,d), pos(c)=r, loc(r)=d, top(p)=c′
eff: cargo(r)←nil, pile(c)←p, pos(c)←c′, top(p)←c

move(r,d,d′)
pre: adjacent(d,d′), loc(r)=d
eff: loc(r)=d′

s0 = {loc(r1)=d1,	cargo(r1)=nil,
pos(c1)=nil,	pile(c1)=p1,	top(p1)=c1,	
pos(c2)=c3,		pile(c2)=p2,	top(p2)=c2,	
pos(c3)=nil,	pile(c3)=p2, top(p3)=nil}

!!!!!!!!!d1!

!!!!!!!!!!!d3!
!

p1!!!!!c1!
!!!!!!!!!d2!

!!!!!!!!!!!p2!
c3!

!!!!!!!!!!!p3!

r1!
c2!

27Deliberation	in	Planning	and	Acting

task
put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)

task
navigate(r1,d2)

action
load(r1,c1,nil,p1,d1)

action
unload(r1,c1,c3,p2,d2)

method
m2-navigate(r1,d2)

action
move(r1,d1,d2)

refinement tree

Example
m1-put-in-pile(c, p′)

task: put-in-pile(c, p′)
pre: pile(c)=p′
body: // empty

r1,c1,p1,d1,p2,d2	
m2-put-in-pile(r, c, p, d, p′, d′)

task: put-in-pile(c,p′)
pre: pile(c)=p, at(p,d), at(p′,d),

p ≠ p′, cargo(r)=nil
body: if loc(r) ≠ d then navigate(r,d)

uncover(c)
load(r, c, pos(c), p, d)
if loc(r) ≠ d′ then

navigate(r,d′)
unload(r, c, top(p′), p′, d)

s = {loc(r1)=d1,	cargo(r1)=nil,
pos(c1)=nil,	pile(c1)=p1,	top(p1)=c1,	
pos(c2)=c3,		pile(c2)=p2,	top(p2)=c2,	
pos(c3)=nil,	pile(c3)=p2, top(p3)=nil}

!!!!!!!!!d1!

!!!!!!!!!!!d3!
!

p1!!!!!c1!
!!!!!!!!!d2!

!!!!!!!!!!!p2!
c3!

!!!!!!!!!!!p3!

r1!
c2!

28Deliberation	in	Planning	and	Acting

task
put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)

task
navigate(r1,d2)

action
load(r1,c1,nil,p1,d1)

action
unload(r1,c1,c3,p2,d2)

method
m2-navigate(r1,d2)

action
move(r1,d1,d2)

Example
m1-put-in-pile(c, p′)

task: put-in-pile(c, p′)
pre: pile(c)=p′
body: // empty

r1,c1,p1,d1,p2,d2	
m2-put-in-pile(r, c, p, d, p′, d′)

task: put-in-pile(c,p′)
pre: pile(c)=p, at(p,d), at(p′,d),

p ≠ p′, cargo(r)=nil
body: if loc(r) ≠ d then navigate(r,d)

uncover(c)
load(r, c, pos(c), p, d)
if loc(r) ≠ d′ then

navigate(r,d′)
unload(r, c, top(p′), p′, d)

m1-uncover(c)
task: uncover(c)
pre: top(pile(c))=c
body: // empty

m2-uncover(r,c,c,p′,d)
task: uncover(c)
pre: top(pile(c)) ≠ c
body: …

s = {loc(r1)=d1,	cargo(r1)=nil,
pos(c1)=nil,	pile(c1)=p1,	top(p1)=c1,	
pos(c2)=c3,		pile(c2)=p2,	top(p2)=c2,	
pos(c3)=nil,	pile(c3)=p2, top(p3)=nil}

!!!!!!!!!d1!

!!!!!!!!!!!d3!
!

p1!!!!!c1!
!!!!!!!!!d2!

!!!!!!!!!!!p2!
c3!

!!!!!!!!!!!p3!

r1!
c2!

29Deliberation	in	Planning	and	Acting

task
put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)

task
navigate(r1,d2)

action
load(r1,c1,nil,p1,d1)

action
unload(r1,c1,c3,p2,d2)

method
m2-navigate(r1,d2)

action
move(r1,d1,d2)

Example
m1-put-in-pile(c, p′)

task: put-in-pile(c, p′)
pre: pile(c)=p′
body: // empty

r1,c1,p1,d1,p2,d2	
m2-put-in-pile(r, c, p, d, p′, d′)

task: put-in-pile(c,p′)
pre: pile(c)=p, at(p,d), at(p′,d),

p ≠ p′, cargo(r)=nil
body: if loc(r) ≠ d then navigate(r,d)

uncover(c)
load(r, c, pos(c), p, d)
if loc(r) ≠ d′ then

navigate(r,d′)
unload(r, c, top(p′), p′, d)

s = {loc(r1)=d1,	cargo(r1)=c1,
pos(c1)=r1,		pile(c1)=nil,	top(p1)=nil,	
pos(c2)=c3,		pile(c2)=p2,	top(p2)=c2,	
pos(c3)=nil,	pile(c3)=p2, top(p3)=nil}

30Deliberation	in	Planning	and	Acting

task
put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)

task
navigate(r1,d2)

action
load(r1,c1,nil,p1,d1)

action
unload(r1,c1,c3,p2,d2)

method
m2-navigate(r1,d2)

action
move(r1,d1,d2)

Example
m1-put-in-pile(c, p′)

task: put-in-pile(c, p′)
pre: pile(c)=p′
body: // empty

r1,c1,p1,d1,p2,d2	
m2-put-in-pile(r, c, p, d, p′, d′)

task: put-in-pile(c,p′)
pre: pile(c)=p, at(p,d), at(p′,d),

p ≠ p′, cargo(r)=nil
body: if loc(r) ≠ d then navigate(r,d)

uncover(c)
load(r, c, pos(c), p, d)
if loc(r) ≠ d′ then

navigate(r,d′)
unload(r, c, top(p′), p′, d)

s = {loc(r1)=d2,	cargo(r1)=c1,
pos(c1)=r1,		pile(c1)=nil,	top(p1)=nil,	
pos(c2)=c3,		pile(c2)=p2,	top(p2)=c2,	
pos(c3)=nil,	pile(c3)=p2, top(p3)=nil}

31Deliberation	in	Planning	and	Acting

Exampletask
put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)

task
navigate(r1,d2)

action
load(r1,c1,nil,p1,d1)

action
unload(r1,c1,c3,p2,d2)

method
m2-navigate(r1,d2)

action
move(r1,d1,d2)

m1-put-in-pile(c, p′)
task: put-in-pile(c, p′)
pre: pile(c)=p′
body: // empty

r1,c1,p1,d1,p2,d2	
m2-put-in-pile(r, c, p, d, p′, d′)

task: put-in-pile(c,p′)
pre: pile(c)=p, at(p,d), at(p′,d),

p ≠ p′, cargo(r)=nil
body: if loc(r) ≠ d then navigate(r,d)

uncover(c)
load(r, c, pos(c), p, d)
if loc(r) ≠ d′ then

navigate(r,d′)
unload(r, c, top(p′), p′, d)

s = {loc(r1)=d2,	cargo(r1)=nil,
pos(c1)=c2,		pile(c1)= p2,	top(p1)=nil,	
pos(c2)=c3,		pile(c2)=p2,	top(p2)=c1,	
pos(c3)=nil,	pile(c3)=p2, top(p3)=nil}

32Deliberation	in	Planning	and	Acting

Heuristics	for	SeRPE

= SeRPE(t)
Ø nondeterministically choose

a method m for t
Ø progress m repeatedly

until it’s finished

= Nondeterministic choice
Ø Multiple possible choices,

algorithm doesn’t specify
how to choose
• Theoretical model:

nondeterministic Turing
machine considers all of them

Ø Can implement as backtracking,
A* search, GBFS, etc.

= What heuristic function?
Ø Open problem
Ø In some cases classical-planning

heuristics can be used, in other cases
they become intractable
[Shivashankar et al., ECAI-2016]

= Ad hoc approaches:
Ø try methods in the order that they’re

given
Ø domain-specific estimates
Ø statistical data on how well each

method works

task* = task or goal or event

33Deliberation	in	Planning	and	Acting

Outline

1. Representation
State variables, commands, refinement methods

2. Acting
Rae (Refinement Acting Engine)

3. Planning
SeRPE (Sequential Refinement Planning Engine)

4. Using Planning in Acting
Techniques

34Deliberation	in	Planning	and	Acting

Using	Planning	in	Acting

= Book describes two approaches:

Ø REAP (Refinement Engine for Acting and Planning)
• RAE-like actor
– uses SeRPE-like planning whenever it needs to make a choice

• Complicated; I’ll skip it

Ø Non-hierarchical actor with refinement planning
• Much simpler
• Illustrates the basic issues

35Deliberation	in	Planning	and	Acting

8

Planning stage
Acting stage

Using	Planning	in	Acting
Run-Lookahead

while (s← observed state) doesn’t satisfy g do
π ← Lookahead(Σ,s,g)
if π = failure then return failure
a← pop-first-action(π); perform(a)

= Lookahead: modified version of SeRPE
Ø Searches part of the search space, returns a partial plan π

= Run-Lookahead executes the first action of π, then calls Lookahead again
Ø Somewhat like minimax game tree search in chess

= Useful when unpredictable things are likely to happen
Ø Replans immediately

= Potential problem:
Ø May pause repeatedly while waiting for Lookahead to return
Ø What if ξ changes during the wait?

36Deliberation	in	Planning	and	Acting

Using	Planning	in	Acting
Run-Lazy-Lookahead

while (s← observed state) ⊭ g do
π ← Lookahead(Σ,s,g)
if π = failure then return failure
while π ≠ ∅ and s ⊭ g and Simulate(π) ≠ failure	do

a← pop-first-action(π); perform(a); s← observed state

= Call Lookahead, execute the plan as far as possible,
don’t call Lookahead again unless necessary

= Simulate tests whether the rest of the plan will execute correctly
Ø Could just compute γ(s,π), or could do something more detailed
• lower-level refinement, physics-based simulation

= Potential problems
Ø May wait too long to replan, not notice problems until it’s too late
Ø Might miss opportunities to replace π with a better plan

37Deliberation	in	Planning	and	Acting

Using	Planning	in	Acting

= Call Lookahead, execute the plan as far as possible,
don’t call Lookahead again unless necessary

= Simulate tests whether the plan will execute correctly
Ø Could just compute γ(s,π), or could do something more detailed
• lower-level refinement, physics-based simulation

= Potential problem: may wait too long to replan
Ø Might not notice problems until it’s too late
Ø Might miss opportunities to replace π with a better plan

38Deliberation	in	Planning	and	Acting

Using	Planning	in	Acting

= Run-Lookahead(Σ,g)
while (s← abstraction of observed state ξ) ≠ g do
π ← Lookahead(Σ,s,g)
if π = failure then return failure
a← pop-first-action(π); perform(a)

● Avoids Run-Lookahead’s problem with waiting for Lookahead to return
● May detect problems & opportunities earlier than Run-Lazy-Lookahead
● May miss some that Run-Lookahead could find

(not a problem if Lookahead is fast)

39Deliberation	in	Planning	and	Acting

Lookahead
= Receding horizon

Ø Cut off search before reaching g
• e.g., bound on search depth or time

Ø Horizon “recedes” on the actor’s
successive calls to the planner

= Sampling
Ø Try a few (e.g., randomly chosen) depth-first

rollouts, take the one that looks best

= Subgoaling
Ø Instead of planning for ultimate

goal g, plan for a subgoal gi

Ø When finished with gi, actor
calls planner on next subgoal gi+1

= Can use combinations of these

Planning
Acting

g

40Deliberation	in	Planning	and	Acting

Example

= Killzone 2
Ø video game, Oct 2009
Ø I didn’t learn about it

until ≈ 2012
= Planner based on SHOP

(which SeRPE generalizes)
Ø Plans enemy actions

at the squad level
= Don’t want to get the best possible plan

Ø Need actions that appear believable and consistent to human users
Ø Need them very quickly

= Use subgoaling
Ø e.g., “get to shelter”
Ø solution plan is maybe 4–6 actions long

= Replan several times per second as the world changes

41Deliberation	in	Planning	and	Acting

Implementation	of	Rae	and	SeRPE

= Rae and SeRPE are new algorithms
Ø Developed while writing the book

= Some of my students are implementing them in Python
Ø Nearly finished
Ø We’ll make the implementations available

= Demo: Rae playing Pac-Man
Ø https://youtu.be/NtLwI7Pc8U8
Ø Author: Zheng Yan

42Deliberation	in	Planning	and	Acting

Summary
= Refinement Acting Engine (RAE)

Ø Body of a refinement method is a simple program that includes
commands to the execution platform

= Refinement planning (SeRPE)
Ø Simulate RAE’s operation on a single task/event/goal
Ø Limitation: deterministic action models

= Acting and planning
Ø Lookahead: search part of the search space, return a partial solution

43Deliberation	in	Planning	and	Acting

Relation	to	the	Book
= Ghallab, Nau, and Traverso (2016).

Automated Planning and Acting.
Cambridge University Press

= Free downloads:
Ø Lecture slides, final manuscript
Ø http://www.laas.fr/planning

= Table of Contents
1. Introduction
2. Deterministic Models
3. Refinement Methods
4. Temporal Models
5. Nondeterministic Models
6. Probabilistic Models
7. Other Deliberation Functions

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

Any	questions?

Refinement Methods

